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8.1 Laplace’s equation 
Laplace’s equation for a function of one, two or three variables is defined as 
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or more succinctly as 
2 0u  . Force is proportional to the second derivative, and Laplace’s equation is a statement 

that at any point, all forces cancel each other out. 

For example, in one dimension, the string of a guitar that is taught between two points, that string adopts the most 

stable configuration: a straight line. (To be fair, there will be a slight dip due to the force of gravity pulling down on 

the string, but that is a negligible effect.) 

For example, in two dimensions suppose we have a wire forming a closed loop, and we dip that wire into a soap 

solution. That soap solution will create a film that quickly stabilizes on a shape that no longer moves: that is, at each 

point, the forces balance each other out. If you apply a force, blowing on it, the film distorts, but with the removal of 

that forcing function, the solution moves back to the stable solution. 

In general, we define a boundary problem where a quantity is described along a one-, two- or three-dimensional 

closed boundary, and want to approximate the solution in the region enclosed in the boundary. 

In one dimension, the solution to Laplace’s equation is trivial: 
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The class of all functions that have a second derivative equal to zero is all linear polynomials, and the only linear 

polynomial that interpolates the two points (a, ua) and (b, ub). That polynomial is 
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In two dimensions, however, it becomes more difficult.  
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Now, we have  
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We can substitute these into the equation: 

           
2 2

, 2 , , , 2 , ,
0

u x h y u x y u x h y u x y h u x y u x y h

h h

       
  . 

Note that we can multiply through by h
2
, and collect similar terms: 
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What this says is that the value of the function at the point (x, y) is approximately the average of the value of the 

function surrounding it. 

Background 
For a function of two variables, the first and second partial derivatives may be approximated by 
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The gradient is defined as a vector of the partial derivatives of a function: 

   

 
 

 

 

 

 

 

d

d

,

,

,

, ,

, , , ,

, ,

u x u x
x

u x y
x

u x y

u x y
y

u x y z
x

u x y z u x y z
y

u x y z
z

 
   

 

 
 
  
 

  

 
 
 
 

   
 
 

 
 

 

  



3 

 

The Laplacian is defined as the inner product of the gradient operator with itself, so 
2 2a b   
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