8.1 Laplace's equation

Laplace's equation for a function of one, two or three variables is defined as

$$
\begin{aligned}
\nabla^{2} u(x) & =\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} u(x)=0 \\
\nabla^{2} u(x, y) & =\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0 \\
\nabla^{2} u(x, y, z) & =\frac{\partial^{2}}{\partial x^{2}} u(x, y, z)+\frac{\partial^{2}}{\partial y^{2}} u(x, y, z)+\frac{\partial^{2}}{\partial z^{2}} u(x, y, z)=0
\end{aligned}
$$

or more succinctly as $\nabla^{2} u=0$. Force is proportional to the second derivative, and Laplace's equation is a statement that at any point, all forces cancel each other out.

For example, in one dimension, the string of a guitar that is taught between two points, that string adopts the most stable configuration: a straight line. (To be fair, there will be a slight dip due to the force of gravity pulling down on the string, but that is a negligible effect.)

For example, in two dimensions suppose we have a wire forming a closed loop, and we dip that wire into a soap solution. That soap solution will create a film that quickly stabilizes on a shape that no longer moves: that is, at each point, the forces balance each other out. If you apply a force, blowing on it, the film distorts, but with the removal of that forcing function, the solution moves back to the stable solution.

In general, we define a boundary problem where a quantity is described along a one-, two- or three-dimensional closed boundary, and want to approximate the solution in the region enclosed in the boundary.

In one dimension, the solution to Laplace's equation is trivial:

$$
\begin{aligned}
\nabla^{2} u(x) & =\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} u(x)=0 \\
u(a) & =u_{a} \\
u(b) & =u_{b}
\end{aligned}
$$

The class of all functions that have a second derivative equal to zero is all linear polynomials, and the only linear polynomial that interpolates the two points $\left(a, u_{a}\right)$ and $\left(b, u_{b}\right)$. That polynomial is

$$
\frac{u_{b}(x-a)-u_{a}(x-b)}{b-a} .
$$

In two dimensions, however, it becomes more difficult.

$$
\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0 .
$$

Now, we have

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}} u(x, y)=\frac{u(x+h, y)-2 u(x, y)+u(x-h, y)}{h^{2}}+\frac{1}{12} \frac{\partial^{4}}{\partial x^{4}} u(\xi, y) h^{2} \\
& \frac{\partial^{2}}{\partial y^{2}} u(x, y)=\frac{u(x, y+h)-2 u(x, y)+u(x, y-h)}{h^{2}}+\frac{1}{12} \frac{\partial^{4}}{\partial y^{4}} u(x, v) h^{2}
\end{aligned}
$$

We can substitute these into the equation:

$$
\frac{u(x+h, y)-2 u(x, y)+u(x-h, y)}{h^{2}}+\frac{u(x, y+h)-2 u(x, y)+u(x, y-h)}{h^{2}} \approx 0
$$

Note that we can multiply through by h^{2}, and collect similar terms:

$$
\frac{u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)}{4} \approx u(x, y)
$$

What this says is that the value of the function at the point (x, y) is approximately the average of the value of the function surrounding it.

Background

For a function of two variables, the first and second partial derivatives may be approximated by

$$
\begin{aligned}
\frac{\partial}{\partial x} u(x, y) & =\frac{u(x+h, y)-u(x-h, y)}{2 h}+\frac{1}{6} \frac{\partial^{3}}{\partial x^{3}} u(\xi, y) h^{2} \\
\frac{\partial}{\partial y} u(x, y) & =\frac{u(x, y+h)-u(x, y-h)}{2 h}+\frac{1}{6} \frac{\partial^{3}}{\partial y^{3}} u(x, v) h^{2} \\
\frac{\partial^{2}}{\partial x^{2}} u(x, y) & =\frac{u(x+h, y)-2 u(x, y)+u(x-h, y)}{h^{2}}+\frac{1}{12} \frac{\partial^{4}}{\partial x^{4}} u(\xi, y) h^{2} \\
\frac{\partial^{2}}{\partial y^{2}} u(x, y) & =\frac{u(x, y+h)-2 u(x, y)+u(x, y-h)}{h^{2}}+\frac{1}{12} \frac{\partial^{4}}{\partial y^{4}} u(x, v) h^{2}
\end{aligned}
$$

The gradient is defined as a vector of the partial derivatives of a function:

$$
\begin{aligned}
\nabla u(x)= & \left(\frac{\mathrm{d}}{\mathrm{~d} x} u(x)\right) \\
\nabla u(x, y)= & \binom{\frac{\partial}{\partial x} u(x, y)}{\frac{\partial}{\partial y} u(x, y)} \\
\nabla u(x, y, z)= & \left(\begin{array}{l}
\frac{\partial}{\partial x} u(x, y, z) \\
\frac{\partial}{\partial y} u(x, y, z) \\
\frac{\partial}{\partial z} u(x, y, z)
\end{array}\right)
\end{aligned}
$$

The Laplacian is defined as the inner product of the gradient operator with itself, so $\sqrt{a^{2}-b^{2}}$

$$
\begin{aligned}
\nabla^{2} u(x) & =\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} u(x) \\
\nabla^{2} u(x, y) & =\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y) \\
\nabla^{2} u(x, y, z) & =\frac{\partial^{2}}{\partial x^{2}} u(x, y, z)+\frac{\partial^{2}}{\partial y^{2}} u(x, y, z)+\frac{\partial^{2}}{\partial z^{2}} u(x, y, z)
\end{aligned}
$$

Acknowledgments

