8.1 Laplace’s equation
Laplace’s equation for a function of one, two or three variables is defined as
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Vau(x, y,z)=a7u(x, y,z)+?u(x, y,z)+a?u(x, y,z)=0

or more succinctly as V?u = 0. Force is proportional to the second derivative, and Laplace’s equation is a statement
that at any point, all forces cancel each other out.

For example, in one dimension, the string of a guitar that is taught between two points, that string adopts the most
stable configuration: a straight line. (To be fair, there will be a slight dip due to the force of gravity pulling down on
the string, but that is a negligible effect.)

For example, in two dimensions suppose we have a wire forming a closed loop, and we dip that wire into a soap
solution. That soap solution will create a film that quickly stabilizes on a shape that no longer moves: that is, at each
point, the forces balance each other out. If you apply a force, blowing on it, the film distorts, but with the removal of
that forcing function, the solution moves back to the stable solution.

In general, we define a boundary problem where a quantity is described along a one-, two- or three-dimensional
closed boundary, and want to approximate the solution in the region enclosed in the boundary.

In one dimension, the solution to Laplace’s equation is trivial:

The class of all functions that have a second derivative equal to zero is all linear polynomials, and the only linear
polynomial that interpolates the two points (a, u,) and (b, u,). That polynomial is

Uy (x-a)-u, (x-b)
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In two dimensions, however, it becomes more difficult.
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Now, we have
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We can substitute these into the equation:

u(x+h,y)—2u(x y)+u(x—h, y)+u(x,y+h)—2u(x,y)+u(x,y—h) <0
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Note that we can multiply through by h? and collect similar terms:

u(x+h,y)+u(x—h,y)+u(x,y+h)+u(x,y—h) -
4

u(xy).

What this says is that the value of the function at the point (x, y) is approximately the average of the value of the
function surrounding it.

Background
For a function of two variables, the first and second partial derivatives may be approximated by
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The gradient is defined as a vector of the partial derivatives of a function:
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The Laplacian is defined as the inner product of the gradient operator with itself, so Va2 —b?

Vu(x) = v (x)
Vu(03) = Zru(x )+ S su(xy)
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Vau(x,y,2) =aa7u(x, Y, z)+%u(x, Y, z)+§?u(x, y,z)
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